

The ASTERIA Extended Mission: Results from the Past Year

Lorraine M. Fesq, ASTERIA Program/Project Manager
Jet Propulsion Laboratory, California Institute of Technology.

Using the ASTERIA* Cubesat to demonstrate In-Space Autonomy

*Arcsecond Space Telescope Enabling Research In Astrophysics

- 6U CubeSat built, tested, operated by JPL
- Collaboration with MIT's Sara Seager, PI
- Demonstrated pointing stability of
 <0.5 arcseconds RMS over 20 minutes
- Demonstrated focal plane thermal stability of ±0.01 K over 20 minutes
- First CubeSat to detect an exoplanet!

Deployed from International Space Station

Development Dec 2014 through Jun 2017

Delivery 1 Jun 2017

Launch 14 Aug 2017

Deployment 20 Nov 2017

Operations lifetime Exp. through Apr 2020

Completed prime mission Feb. 2018; now used for <u>five</u> experiments

ASTERIA Experiment #1. Multi-mission EXECutive (MEXEC) Closed-Loop Task Execution

Shift the paradigm to operate spacecraft from timed sequences to closed-loop task execution.

- Goal: Demonstrate effectiveness of "task networks" (tasknets) and to increase efficiency and robustness of future space missions
- Tasknets
 - Check preconditions and postconditions of tasks
 - Simpler commanding WHAT not HOW
 - Reduces down-time on space vehicle
 - Robust on-board execution space vehicle determines order and timing of activities based on current conditions and handles unexpected events

Tasknets provide flexibility to achieve activities

MEXEC code is being flight-certified, integrated into ASTERIA FSW, validated on testbed and uplinked in August 2019.

#2. Autonomous Navigation (AutoNav) Overview

- Optical images of objects are used to estimate spacecraft position, velocity, and attitude
- AutoNav: All ground-based Optical Navigation techniques transferred to spacecraft and automated
- Involves 3 steps
 - Image processing: Automatically identifies stars or target body in camera FOV and performs center-finding
 - 2. Orbit determination (OD): Filter combines images and other spacecraft information such as thrusting, attitude knowledge, etc. to determine complete spacecraft position state
 - 3. Maneuver planning and execution: Maneuvers computed at pre-specified times to retarget s/c to reference trajectory

ASTERIA Experiment #3. Autonav

Demonstrate onboard orbit determination in Low Earth Orbit (LEO)

without GPS using Autonav.

- Demonstrate a fully independent means of spacecraft OD for Earth orbiters with only passive imaging using ASTERIA camera.
- Enable future missions to navigate in GPS-denied environments.

- ✓ Image a small body to confirm camera quality
- √ Image geo-stationary spacecraft to assess feasibility
- ✓ Run Autonay software on testbed for metrics
- Integrate Autonav into ASTERIA FSW, test and upload.

JPL's Autonav software is being integrated into ASTERIA FSW, validated on testbed and uplinked in late Summer 2019.

#4 Jitter Experiments

Jitter comes in two forms

- Spacecraft-level jitter: Flight-validate the JPL's Small Satellite Dynamics Testbed simulation models for the ASTERIA XACT box (ACS system) by running wheels at 4-6 speeds and quantifying image motion. Only uses XACT box for control.
- Instrument-level jitter: Uses full instrument control loop (XACT + piezo-stage that moves detector based on optical feedback) to Characterize jitter as a function of RW speeds to better interpret science data.

1000 rpm; Image 1, Window 1 on 2018-11-07

Completed Spacecraft-level jitter characterization

Will benefit future smallsat missions using the XACT box and is crucial to astrophysics smallsat missions (improves science data quality)

#4. Science Observations

Perform new ASTERIA observations to extend mission science.

- ASTERIA has demonstrated unprecedented photometric precision for a CubeSat mission.
- Current science goals will **shift from follow-up of previously detected planets to discovery of as-yet unknown additional planets**. The spacecraft is uniquely suited to perform long-term monitoring of stars such as alpha Centauri for small transiting planets.
- The discovery of a transiting Earth-sized planet around alpha Cen A and/or B would be of the highest scientific value as such a planet would be our closest exoplanetary neighbor orbiting a Sun-like star.

Back-up

#5. Amazon Web Services Ground Station Experiment

<u>Amazon Web Services (AWS) Ground Station (GS) locks onto ASTERIA - its first NASA Spacecraft!</u>

- "Amazon Ground Station as a Service*" announced in Fall 2018
- At the request of NASA HQ/ESTO, ASTERIA conducted downlink experiment in January 2019 with an AWS GS
 - AWS GS "listened" while ASTERIA performed regular downlink operations with Morehead State University ground station.
 - AWS GS was able to lock onto the transmitted signal achieved carrier lock and frame sync
- Planning experiment to demonstrate uplink and downlink (pending NTIA license update)
- Significant step to evaluate potential for future CubeSat missions to use AWS GSs
 - Potential to increase telecom options
 - Provide more flexibility in operations
 - Reduce costs pay-by-minute model

This experiment will benefit future CubeSats, confirming that AWS GS can provide communication services

Summary

- ASTERIA is an ideal platform for experiments
 - Two years remained life past prime mission
 - Flight software is changeable
 - Highly capable spacecraft and payload
- Five experiments being conducted on ASTERIA
 - 1. Exoplanet exploration
 - 2. Task-level execution
 - 3. Autonav for LEO w/o GPS
 - 4. Jitter Characterization
 - NASA HQ/ESTO AWS Ground Station testing
- Additional experiments in the pipeline
 - NASA HQ/ESTO Sensor-Web
 - Model-based health assessment
- These capabilities are relevant to planetary, astrophysics and Earth Sciences

ASTERIA is a role model for using in-space assets to mature technologies and cross the TRL "valley of death." LET'S USE MORE ASSETS FOR MORE EXPERIMENTS!

Acknowledgements

Co-authors:

- OJPL: Patricia Beauchamp, Amanda Donner, Rob Bocchino, Brian Kennedy, Faiz Mirza, Swati Mohan, David Sternberg, Matthew W. Smith, Martina Troesch
- OMIT Haystack Observatory: Mary Knapp

We Thank

- ASTERIA Principal Investigator Sara Seager (MIT) for supporting our efforts to use the spacecraft for these technology demonstrations while continuing to perform exoplanet exploration science;
- The JPL ASTERIA team: Brian Barker, Brian Campuzano, Peter DiPasquale, Kyle Hughes, Ansel Rothstein-Dowden, Jose Carlos Abesmis, Jules Lee, and Kristine Fong, who continue to keep the spacecraft healthy and operational;
- Chris Pong, Shyam Bhaskaran, Patrick Doran, David Ardila, Aadil Rizvi, Tomas Martin-Mur, Professor Soon-Jo Chung (Caltech) and Carolyn Maynard (Raytheon) who are supporting development of the technology demonstrations;
- Bryce Demory (University of Bern) for science data analysis;
- Ben Malphrus and his team from Morehead State University for continued ground station support.